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Abstract—At the planning of combined heat and power
(CHP)-based micro-grid, its distributed energy resources (DER)
capacity is to be selected and deployed in such a way that it
becomes economically self-sufficient to cater all the loads of the
system without utility’s participation. Economic deployment of
DERs is meant to select optimal locations, optimal sizes, and
optimal technologies. Optimal locations and sizes, which are
independent of CHP-based DERs types, are selected, here, by loss
sensitivity index (LSI) and by loss minimization using particle
swarm optimization (PSO) method, respectively. In a micro-grid,
both fuel costs and ��� emissions are, mainly, dependent on
types of DERs used. So the main focus of the present paper is to
incorporate originality in ideas to evaluate how different optimal
output sets of DER-mix, operating within their respective capacity
limits, could share an electrical tracking demand, economically,
among micro-turbines and diesel generators of various sizes,
satisfying different heat demands, on the basis of multi-objective
optimization compromising between fuel cost and emission in
a 4-DER 14-bus radial micro-grid. Optimization is done using
differential evolution (DE) technique under real power demand
equality constraint, heat balance inequality constraint, and DER
capacity limits constraint. DE results are compared with PSO.

Index Terms—Diesel generator, differential evolution, economic
emission load dispatch, loss sensitivity index, micro-turbine, par-
ticle swarm optimization.

NOMENCLATURE

DER Distributed energy resources.

CHP Combined heat and power.

Mt Micro-turbine.

Dg Diesel generator.

DG Distributed generator/generation.

DE Differential evolution.

System electric loss (kW).
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Active power generation of th
DER(kW).

, Upper and lower limits of ,
respectively.

Active power injection at th bus (kW).

Phase angle of th bus.

Voltage of th bus (p.u.).

Upper and lower bounds of (p.u.),
respectively.

Reactive power generation of th DER.

Upper and lower bounds of
(kvar), respectively.

Total electric demand (kW).

Line flow from th to th bus (kW).

Total numbers of DERs.

Total cost of emission plus fuel ($/h).

Fuel cost function and its value at
, respectively ($/h).

emission function and its value
at , respectively (g/kWh).

Weighting factor.

Penalty factor for emission.

Fuel cost coefficients of th DER.

Emission coefficients of th DER.

Thermal efficiency of th DER.

Efficiency of heat exchanger.

Heat demand (kWh).

LSI Loss sensitivity index.

I. INTRODUCTION

W ITH rapid escalation in fossil fuel price as well as sharp
increase in the capital cost of new central generating

plant, there is a focused attention on alternate generating system
with higher efficiency of energy use. Under deregulation and re-
structuring of power system, electricity market becomes highly
competitive. Today, micro-grid, due to its major technological
and regulatory innovation of its small-scale, on-site CHP-based
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DERs, has become enabling to compete with traditional central-
ized electricity plant. Again, as beneficial for power quality and
reliability (PQR) of supply to end-users, micro-grid is going to
become an attractive alternate source of power to industry, many
utilities, commercial buildings, and many other places [1]–[5].

The new clean air policies and regulations have forced
electricity generating plants and power producers, called inde-
pendent power producer (IPP), to consider the environmental
impact of DERs in the operation of micro-grid. Under these
circumstances, sharing of demand by DERs is not only gov-
erned by the units’ capability of minimizing the total fuel cost
of system generation, but also their capability of satisfying
the emission requirements. All CHP-based DERs are respon-
sible for creating atmospheric pollution with the emissions of

, , , etc. emissions have been the focus of
considerable policy effort due to their direct health effects and
indirect contribution to ozone levels. The economic emission
power sharing is a multi-objective optimization problem that
pursues simultaneous compromise between least cost operation
and minimum emission level. The present paper uses price
penalty factors approach with emission , which
can convert the above-mentioned multi-objective function
to a single objective optimization problem. This paper has
considered micro-turbines (Mt) and diesel generators (Dg) as
two CHP-based DERs and their emission in the study.
Dgs involve high combustion temperature that result in high

production, whereas Mts have much lower emission
because of their lower combustion temperature [6]–[8].

On economic analysis in the context of optimal types, sizes,
and locations of distributed generators (DG) in a distribution
network or in a micro-grid, modern soft computing techniques,
like genetic algorithms, tabu search, evolutionary programming,
DER-CAM, etc., have successfully been applied in many re-
search works. Teng et al. [9] proposed a value-based method
of selection of optimal types, sizes, and locations of DGs, out
of fuel cells, mini gas turbines, and solar PV, after proper codi-
fication in genetic algorithms (GA) method. Hernandez-Aram-
buro et al. [10] aimed at developing a unit commitment oper-
ation in a micro-grid on optimal fuel consumption with con-
straints of local heat and electricity demand balance as well
as provision for certain minimum reserve power. Authors im-
posed penalty on excess heat generation and, finally, claimed
their solution strongly supports the communication infrastruc-
ture. Mitra et al. [11] presented a dynamic programming-based
analysis on a six-bus meshed micro-grid for finding out op-
timal mix of DERs among micro-turbines, solar PV (i.e., time
varying capacity), and battery storages to meet both electrical
and thermal loads. Imposing reliability constraint authors mini-
mized the cost, which consisted of deployment cost, heat com-
pensation cost, and fuel cost. Hatziargyriou et al. [12] addressed
the unit commitment problem assuming linear continuous and
convex bid functions for DG as well as loads along with market
price. But the economic dispatches of regulated DGs were han-
dled using monthly 24-hour typical emission curve to incorpo-
rate environment impact. Pipattanasomporn et al. [13] devel-
oped a optimal mix of DG model using mixed-integer linear pro-
gram with emission as one of the constraints. Marnay et
al. [14] used DER-CAM optimization technique for minimizing

cost of combination of equipments, including CHP equipments
and renewable sources, for commercial building, and authors
reported carbon emission reduction in their results. Distributed
Energy Resources Customer Adoption Model (DER-CAM) is a
fully technology-neutral optimizing model of economic DER
adoption, written in the General Algebraic Modeling System
(GAMS) software. Its objective is to minimize the operating cost
of on-site generation and CHP systems, for either an individual
customer site or a micro-grid. It was developed at Berkeley Lab-
oratory, USA. Hawkes et al. [15] developed a linear program-
ming-based unit commitment for a micro-grid with an object
to minimization of equivalent annual cost of meeting a given
energy (electricity and heat) demand profile. The present paper
discusses, briefly, on bus-location and size selection of DERs
[16], [17] and tabulates results in the context of a 14-bus radial
micro-grid. However, main focus is beamed on the economic
emission load dispatch (EELD), both thermal and electric, using
differential evolution (DE) algorithms [18], [19]. DE is found
to yield better and faster solution, satisfying all the constraints,
both for uni-modal as well as multi-modal systems, using its
different crossover strategies. It is a simple population-based
stochastic parallel search evolutionary algorithm for global op-
timization. EELD results obtained by DE are verified by PSO
[20] and both results are compiled in the tabular form. PSO al-
gorithm is summarized as simple concept, easy implementation,
robustness to control parameters, and computationally efficient
when compared with other heuristic optimization techniques.

The contents of this paper are organized into eight sections.
Following the Nomenclature and Section I, Section II provides
detailed formulations of the problem. Section III gives a brief
overview of DE technique. Section IV details the DE algorithms
in the context of present EELD problem. Section V includes
necessary figures, results, and discussions of the study case. The
conclusion is drawn in Section VI. References and biographies
are appended last.

II. PROBLEM FORMULATION

The present paper addresses, mainly, the EELD-based sched-
uling of DERs for proper energy management planning. As
DERs siting and sizing are relevant in the present context, so
their formulations are added additionally with EELD.

A. Bus-Location Selection of DERs Using LSI

Loss sensitivity (1) based on Newton-Raphson load flow
method is used to find out the optimal placement of DERs:

(1)

where is Jacobian sub-matrix of , i.e., containing
all terms. is a function of both and in (2):

(2)

Change of with change of depends on change of both
and . As change can easily be adjusted, therefore, its effect
on change has been neglected here; only effect has been
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taken into account. is total number of buses in the network
[16], [17].

B. Size Selection of DER

For system loss minimization, objective function is
given by

(3)

Optimization is done subject to the PQR constraints as given
below.

1) Bus Voltage Tolerance Limit:

2) Limit on the Active and Reactive Power Generation of the
DER:

3) Line Flow Limits: It must be below thermal limits of line
and takes care of internal congestion of the micro-grid

4) Zero Slack Bus Injection: and are made as small
as possible (nearly zero). This reduces the power drawn from
utility to zero. Zero slack bus injection constraint helps to know,
at the planning stage, what exact DER capacities are required to
meet the internal demand of micro-grid.

C. Economic Emission Load Dispatch (EELD)–Both Thermal
and Electric

Cost function of EELD is given in (4):

(4)

Here, is the total cost of emission and fuel. blends
emission cost with the normal fuel cost . has

been considered, presently, as the only one pollutant for anal-
ysis. is the weighting factor whose value varies uniformly
between [0, 1].

Above optimization is done subject to following constraints.
1) Power Balance:

(5)

It is common practice to express the network loss as a
quadratic function of the generator power outputs through B-co-
efficients and its general form containing a linear term and a
constant term [8], [21], referred to as Kron’s loss formula, is

(6)

where , are called the loss-coefficients; their
units are . They can be regrouped to form a symmetrical

square matrix of dimension . Unit of matches that
of and it contains a single element, while units of are
dimensionless and elements of form matrix.

Dependent virtual utility generator capacity is related
by following (7):

(7)

Equation (7) can be simplified as

(8)

where

(9)

(10)

(11)

The real roots of (8) are obtained as

where (12)

To satisfy the equality constraint of (5), the positive root of
(12) is chosen as output of the dependent first generator.

2) DER Capacity Limits Constraint: As the power generated
by DER shall be within their lower limit and upper limit

, so that

(13)

3) Heat Balance Inequality Constraint: Considering heat
output of Dg and Mt are proportional to their respective
electric output

(14)

Heat balance inequality constraint is given as follows:

(15)

is proportionality constant, called heat-to-power ratio of the
th DER and determined from heat rate using (16). Unit-wise

heat exchanger has been considered:

Heat Rate
(16)
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D. Steps to Find Out for [8], [22]

The procedural steps to find out the price penalty factors for
emissions are as follows.

1) Fuel Cost: The fuel cost of each DER is evaluated at its
maximum output in $/h is

(17)

2) Emission: emission release of the th DER is
evaluated at its maximum output in g/kWh as

(18)

Emission coefficients ( , , and ) for emission of
the th DER are determined applying least squares principle
of curve fitting technique on data which are expressed in
emission versus DER outputs. Similarly, fuel cost coefficients
( , and ) are determined from fuel cost versus DER out-
puts. All such data are obtained from [10] and [23]–[26].

3) : of the th DER is calculated as

(19)

1) Values of set are arranged in ascending order.
2) Maximum capacity of each unit, , is added one

at a time, starting from the smallest unit until

(20)

3) At this stage, associated with the last unit in the
process is the price penalty factor for the given load
demand.

4) Once the value of is known, (4) can be minimized
subject to the constraints given in (5), (13), and (15).

III. OVERVIEW OF DIFFERENTIAL EVOLUTION TECHNIQUE

DE is an extremely powerful optimization algorithm from
evolutionary computation due to its excellent convergence char-
acteristics and a few control parameters. DE uses a population
“IP” of size “NP”, at the “ th” iteration, composed of floating
point-encoded individuals as per (21), which evolve to reach an
optimal solution. Each individual of (22) is a vector that
contains as many parameters as the problem decision variables
D, called “genes”. The population size “NP” is a control param-
eter of the algorithm selected by the user, which remains con-
stant throughout the optimization process:

(21)

(22)

A. Initialization

The optimization process in DE is carried out with three basic
operations: mutation, crossover and selection. The first step of
this algorithm is to create an initial population of “NP” vectors,

by randomly generating individuals within the boundary con-
straints of (23):

(23)

where “rand” function generates values uniformly in the in-
terval [0, 1]. The fitness function is evaluated for each indi-
vidual. and are upper and lower limit of boundary con-
straint of the th population.

For each generation, the individuals of the population are up-
dated by means of a “Reproduction” scheme. Therefore, for
each individual “ind”, a set of other individuals “ ” is randomly
extracted.

B. Mutation/Differentiation

The mutation operator is in charge of introducing new param-
eters into the population. A set of randomly extracted individ-
uals is necessary for “Differentiation”.
To achieve this, mutant operator creates mutant vectors by per-
turbing a randomly selected vector with a difference vector
. The result of “Differentiation”, so-called “trial” individual, is

(24)

where is the “constant of differentiation”. As for ex-
ample, three different individuals are randomly extracted from
a trial population. The updated trial individual is equal to

, where and . The scaling con-
stant, , is an algorithm control parameter used to control the
perturbation size in the mutation operator and to improve algo-
rithm convergence. , , and are randomly chosen vectors
and are selected anew for each parent vector.

C. Crossover/Recombination

After the trial, individual “ ” is recombined with updated
one “ind”. Recombination represents a typical case of a “genes”
exchange. The trial one inherits genes with some probability.
Thus

if
otherwise

(25)

where and is the “constant of recom-
bination”. Crossover constant is an algorithm parameter that
controls the diversity of the population and aids the algorithm
to escape from local optima.

D. Selection

Selection is realized by comparing the cost function values
of updated and trial individuals. If the trial individual has lower
value of the cost function, then it replaces the updated one:

if
otherwise.

(26)

It may be noticed that there are only three control parameters in
this algorithm. These are “NP” (population size), “ ” (constant
of differentiation), and “ ” (constant of recombination). As
for the termination conditions, one can either fix the number of
generations “ ” or a desirable precision of a solution. DE
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offers several variants or strategies for optimization. These can
be denoted by DE/x/y/z, where x refers to the vector used to
generate mutant vectors, y the number difference vectors used
in the mutation process, and z the crossover scheme used in the
crossover operation.

IV. DE-BASED ALGORITHMS FOR EELD

Differential evolution can be adjusted to solve the
economic emission load dispatch (EELD) problem. Let

be the trial vector designating
the th particle of the population and . The
elements of are real power outputs of generating units.
The objective is to minimize the function as mentioned in (4).
Set the value of “ ” starting from “0”. Divide the interval (0,
1) into 40 subintervals. The corresponding DE algorithm can
be described by the following steps:

1) Input the system data consisting of fuel cost curve coeffi-
cients and emission level coefficients of generators, power
generation limits, weighting factor “ ”, load demand,
transmission loss coefficients for that load demand.

2) Initialize the particles of the population in a random
manner according to the limits of each unit including in-
dividual dimensions, search points, and velocities. These
initial particles must be feasible candidate solutions that
satisfy the practical operating constraints.

3) Fitness function “ ” is evaluated as per (4), after calcu-
lating “ ” using (19) for each individual set of the pop-
ulation.

4) Apply the Differentiation (Mutation) operation on the pop-
ulation as per (24).

5) Apply the Crossover (Recombination) operation on the
population, generated after mutation operation of Step 4),
as per (25).

6) The population settings after Steps 4) and 5), which per-
form better against the fitness function, are selected to be
part of the next population according to (26).

7) If the current iteration is greater than or equal to the
maximum iteration, keep the result in an Array (known
as Pareto-optimal set) and stop; otherwise, repeat Steps
3)–6).

8) Increment the value of “ ” in step of 0.025 and repeat the
steps starting from Step 1) to Step 7). Repeat this process
until the value of “ ” reaches to 1.

9) Best Compromise Solution—The algorithm described
above generates the non-dominated set of solutions known
as the Pareto-optimal solutions. The decision maker
(power system operator) may have imprecise fuzzy goal
for each objective function. To aid the operator in selecting
an operating point from the obtained set of Pareto-optimal
solutions, fuzzy logic theory is applied to each objective
function to obtain a fuzzy membership function as per
(27):

(27)

TABLE I
LINE DATA—14-BUS SYSTEM

TABLE II
BUS DATA—14-BUS SYSTEM

The best non-dominated solution can be found when (28) is at
maximum where the normalized sum of membership function
values for all objectives is highest:

(28)

In (28), is the number of non-dominated solutions. After
completing the process, best solution of the EELD problem is
found.

V. CASE STUDY

This paper conducts study on a 4-DER 14-bus hypothetical
radial micro-grid. Line data and bus data of the 14-bus system
are shown in Tables I and II, respectively. The system is devel-
oped in a similar way as the authors’ previous work [16]. Utility
as a virtual generator is connected to slack bus 1 and acting as a
spinning reserve during the period of analysis.

B-coefficients are dependent on both locations and sizes of
the DERs in the network. Sizes are also required to know for
multi-objective EELD problem, so that no oversized DER is
placed at any bus. Evaluation of sizing of CHP-based DERs
using loss minimization is independent of their types. Type is,
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TABLE III
DERS DATA -FUEL AND EMISSION COEFFICIENTS,

OPERATING LIMITS, HEAT RATES

again, the main factor for present EELD study. Therefore, for
EELD-based energy management planning of a micro-grid, it is
relevant to know the optimal sitings and sizings of strategically
deployed DERs. However, the main focus of the present work
is to study how demands, both electric and thermal, could be
shared by DER-mix under EELD condition.

B-coefficients, efficiency of heat exchanger, DE, and PSO
data used in the studies are shown below and Table III shows
the data of DERs [10], [16], [23]–[27].

1) B-coefficients:

2) Efficiency of heat exchanger: 90%
3) PSO data [16], [17]:

Population size: 60; Learning factors: , ; Gener-
ation or iteration ; Inertia weight factor:

and . Constriction Factor .
4) DE data: using strategy DE/rand/1

Population , Scaling factor, or, constant of Dif-
ferentiation , Crossover constant, or, constant
of Recombination .

Following studies are conducted on the test micro-grid:

A. Optimal Siting and Sizing of DERs

Optimal sitings of DERs are selected on the basis of LSI of
buses. Fig. 1 plots the LSI versus bus number. All negative LSI
values of buses at the fourth quadrant are brought to the first
quadrant by shifting the abscissa downward by a suitable dimen-
sion. Though terminal bus possesses higher negative LSI value
compared to other buses on the same feeder, siting of DER at
terminal bus is avoided on the reliability ground. Due to higher

Fig. 1. LSI Plot of 14-bus system.

outage probability of feeder sections, there are higher chances
of under utilization of DER capacity at terminal bus because
of islanding from the rest of the network. Compromising be-
tween LSI value and reliability, arbitrarily selected four DERs
here, have been located at three junction buses 2, 6, and 11 and
fourth one at bus 12, which assumes LSI value next higher to
terminal bus 13 on the same feeder. Also, at peak demand of
495 kW and without DER, voltage obtained at terminal bus 13,
by Newton-Raphson load flow method, is 0.879 p.u., which is
the lowest minimum among all 14 network buses.

Optimal sizes of DERs are evaluated at minimum system loss
using PSO, and results of simulation obtained at zero slack bus
constraint are obtained as 250 kW (at bus 2), 80 kW (at bus 6),
139 kW (at bus 11), and 30 kW (at bus 12).

B. Bi-Objective Optimization

EELD study has been covered in this subsection. To maintain
the DERs capacity sizes within the limit as obtained in subsec-
tion (A), 200 kW Dg at bus 2, 80 kW Mt at bus 6, 100 kW Dg at
bus 11, and 30 kW Mt at bus 12 are selected. A 500 kW or higher
capacity Dg is assumed as dependent virtual utility generator
covering maximum demand of 495 kW. Data for fuel consump-
tion of Mts and Dgs have been collected from [10] and [24],
respectively. Emission data of Mts are obtained from [23] and
that of Dgs from [25] and [26]. All these data are curve fitted,
interpolated as well as extrapolated by a second-order polyno-
mial to obtain a convex nature between 20% and 100% of rated
power of respective DER. Thermal efficiency of all Dgs have
been taken as 30% and that of Mts as 50% [16]. As it is an
energy management planning of micro-grid, authors try to find
out how a particular electric demand could be shared solely by
DERs without participation of utility, i.e., at zero slack bus in-
jection. This could be obtained putting comparable weight to
fuel cost and emission coefficients of 500 kW Dg (Table III).
Characteristics of Mts and Dgs are such that their emissions per
hour per unit output (here, in g/kWh) decrease with the increase
of each of their kW outputs towards respective rated values,
but reverse are the cases for fuel consumption and heat output.
Again, from the data of the present study, it is observed that for
the same output, emissions of both Dgs are several times
higher than that of Mts. Also fuel consumption cost is higher
for Dgs whereas kWh heat output is lower when compared with
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TABLE IV
RESULTS AT OPTIMAL EMISSION �� � �� AND AT OPTIMAL FUEL COST

�� � ��

TABLE V
BEST COMPROMISED SOLUTION BY PARETO

Mts at same kW output. Results (Tables IV and V) of the study
reveal following valuable information, which conform to their
characteristics and help in energy management planning of the
micro-grid:

1) At lower electric demand tracking, i.e., 169 kW, range
of heat output is wide i.e., from minimum value of
157.74 kWh at optimal emission condition to
maximum value 191.76 kWh at optimal fuel cost
(Table IV). Heat demand within this range could be served
by DER-mix simultaneously with particular electric de-
mand of 169 kW. If the electric demand to be tracked
increases, corresponding range of heat output is narrowed
down. If heat demand exceeds the range, alternative
source, like back-up boiler, is to be installed.

2) Like heat demand, fuel cost as well as emission ranges are
narrowing down with increase of demand. At higher de-
mands, all DERs approach towards their respective max-
imum capacity limit and thus chances of shuffling their out-
puts get narrowed.

3) As utility, i.e., 500-kW virtual generator, acts as a spin-
ning reserve, its and coefficients help set up reserve
charge to be imposed on the owner.

4) Table V shows the Pareto optimal results. Comparing with
results of Table IV, it is noticed that there is a compromiza-
tion between fuel cost and emission.

Fig. 2. Pareto optimal front for fuel cost and�� emission at 169-kW electric
demand with DE.

Fig. 3. Pareto optimal front for fuel cost and�� emission at 169-kW electric
demand with PSO.

5) Figs. 2 and 3 depict the Pareto optimal front for fuel costs
and emissions at 169-kW electric demand obtained
using DE and PSO, respectively.

6) Figs. 4 and 5 are the 3-D plot of optimal front showing
the relations among fuel costs, emissions, and heat
demands at 169-kW electric demand tracking with DE and
PSO, respectively.

7) Fig. 6 depicts the change of optimization with waste
heat utilization at 169-kW electric demand. With the in-
crease of heat output at same demand, emission in-
creases due to shift of generation from diesel to micro-tur-
bine. Similar trends are observed at other two electric de-
mands, but range of heat output is shrunk at higher electric
demand.

8) At constant heat demand, optimal emission and optimal
fuel cost are, respectively, 0.14% and 0.4% sensitive to per
kW changing load at 169 kW. Almost similar sensitiveness
is achieved at other two demands.

C. Comparison Between (DE) and (PSO)

Results obtained by both simulation techniques are tallying
each other (Tables IV and V). The only difference is that DE
algorithm is faster than PSO (Table VI). The program is written
and run in MATLAB 7 using Pentium-4 PC with 512 MB
of RAM. For 1500 iterations with 60 population size, min-
imum and maximum time elapsed using DE are 115.97 s and
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Fig. 4. 3-D plot of optimal front showing the relations among fuel cost, ��
emission, and heat demand at 169-kW electric demand tracking with DE.

Fig. 5. 3-D plot of optimal front showing the relations among fuel cost, ��
emission, and heat demand at 169-kW electric demand tracking with PSO.

Fig. 6. Heat output versus �� emission at 169-kW electric demand.

TABLE VI
COMPARISON OF TIME (SECONDS)

143.63 s, respectively, whereas those with PSO are 134.078 s
and 320.625 s.

VI. CONCLUSION

Both air pollution and fuel shortage are the burning issues
with which all the world is concerned. As a result of it, every
country is striving to shift from its conventional fossil fuel-based
generating system to one like micro-grid. Both emission and
fuel costs are related to O&M cost of DERs. Energy manage-
ment of micro-grid is largely dependent on both fuel cost and
emission, which, in turn, helps make the micro-grid compet-
itive in deregulated market. In the context of a 14-bus radial
micro-grid, the present paper proposes an original idea to in-
corporate in the optimization technique by which owners could
make a schedule to cater a particular electric demand and its cor-
responding range of heat demands solely using the DER-mix at
different weight of compromisation between fuel cost and emis-
sion. This method shows one of the many avenues of econom-
ical analysis. There are a number of other factors, such as type of
manufacturer and technology of DERs on which both fuel con-
sumption and emission depend. Again, policies of local utility,
as well as government regarding emission, affect the analysis.
Results obtained, independently, by DE as well as PSO tech-
niques confirm what economical mix of DERs would be in op-
eration to cater different loads and corresponding heat demands.
Future study can be extended with use of other techniques, sys-
tems, and renewable sources.
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