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Abstract—This paper proposes an operating framework for ag-
gregators of plug-in electric vehicles (PEVs). First, a minimum-cost
load scheduling algorithm is designed, which determines the pur-
chase of energy in the day-ahead market based on the forecast elec-
tricity price and PEV power demands. The same algorithm is ap-
plicable for negotiating bilateral contracts. Second, a dynamic dis-
patch algorithm is developed, used for distributing the purchased
energy to PEVs on the operating day. Simulation results are used
to evaluate the proposed algorithms, and to demonstrate the po-
tential impact of an aggregated PEV fleet on the power system.

Index Terms—Electric vehicles, power demand, power system
economics, smart grids.

NOMENCLATURE

cj Rated power of charger type j.

€; Departure time (slot) for the first trip in the
morning for PEV i.

& Overall energy required to charge all PEVs.

&; Energy required to charge PEV :.

H; Set of time slots where PEV ¢ will be charged.

K Number of slots within the charging period.

l; Charging time (number of slots) of PEV .

n(l,j,s,e) Number of PEVs with charging duration /,
charger type 7, arrival slot s, and departure
slot e.

N Number of PEVs under the aggregator’s
control.

N Number of PEVs charged with energy
purchased through long-term bilateral
contracts.

Ny Number of PEVs charged with energy
purchased in the day-ahead market.

i Charger power rating of PEV 4.

Dik Scheduled power for PEV 4 at time slot .

Pr Total scheduled charging power at time slot k.

R.+1.(m) Rank of 7, for time slots between s + 1 and e.

Manuscript received February 22, 2011; revised June 16,2011, July 21, 2011;
accepted September 06, 2011. Date of publication September 06, 2011; date
of current version February 23, 2012. This material is based upon work sup-
ported by the National Science Foundation under Grant 0835989. Paper no.
TSG-00059-2011.

The authors are with the Department of Electrical and Computer Engi-
neering, Iowa State University, Ames, IA 50011 USA (e-mail: dwu@ias-
tate.edu; dali@iastate.edu; leiying@jiastate.edu).

Digital Object Identifier 10.1109/TSG.2011.2163174

i Arrival time (slot) for the last trip at night for
PEV i.

AT Duration of time slot.

Tk Wholesale electrical energy price in time slot
k.

I. INTRODUCTION

HE transportation sector accounts today for a significant

portion of all nations’ petroleum consumption and carbon
emissions. For instance, in the U.S. in 2009, 94% of the trans-
portation energy was obtained from petroleum, while 63% of
the crude oil was imported [1]. This dependency on dwindling
oil resources represents an ever-increasing risk to national se-
curity and poses grave environmental concerns. The electrifi-
cation of transportation and, in particular, the development of
plug-in electric vehicle (PEV) technology has been recognized
as a key part of the solution to energy and environmental prob-
lems worldwide [2], [3]. PEVs—either plug-in hybrid electric
vehicles or pure electric vehicles—are equipped with adequate
battery energy storage to travel for several miles using (mostly)
electricity, and are recharged from the electric grid, thus al-
lowing electricity to displace a portion of petroleum.

The emerging fleet of PEVs will introduce a considerable
amount of additional load on the power system. In the sim-
plest case, this can be treated as a traditional (i.e., uncontrol-
lable) load, being served whenever a PEV is plugged in, and
billed at a normal retail rate. In [4], the power consumption
from a fleet of uncontrolled light-duty PEVs has been estimated
based on the travel pattern obtained from the 2009 National
Household Travel Survey (NHTS) [5]. The analysis of [4] and
other reports [6]-[16] have predicted that a significant amount
of PEV charging will take place during peak hours when the
wholesale electricity price is high. Moreover, the coincidence
between peaks of PEV and non-PEV load will require invest-
ments in generation, transmission, and distribution, in order to
maintain the reliability of the power system. Fortunately, PEVs
are more flexible than traditional load, because the majority of
PEV owners return home early in the evening, and may not
have a preference about the exact time that their vehicles will be
charged, as long as the batteries are full by the next morning. To
utilize this flexibility, appropriate algorithms for charging con-
trol and management must be designed.

This control will be performed by PEV aggregators, which
will be either existing utilities that will offer new financial con-
tracts specific for PEV loads, or new for-profit entities that will
participate in the wholesale electricity market. A broad array of
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aggregators is described in [17], and a conceptual framework to
integrate the aggregated PEVs with vehicle-to-grid (V2G) ca-
pability into the grid is proposed in [18]. The PEV aggregator
considered herein has a significantly large customer base so that
it can purchase energy at wholesale. The aggregator could also
provide ancillary services to the power system. This has been the
focus of previous work, wherein the possible ancillary services
that could be offered by aggregated PEVs have been reported
[17]. For example, controlling PEVs with or without V2G ca-
pability to maximize the revenue from frequency regulation is
discussed in [19] and [20], respectively.

In contrast to these previous approaches, where the objec-
tive is profit maximization from ancillary services, this paper
focuses on the actions of an aggregator who wishes to maximize
its energy trading-related profits. In this analysis, the contracts
with the PEV owners stipulate that charging will only occur
during off-peak hours, e.g., from 10 P.M. to 7 A.M., because
most vehicles are not in use and the wholesale electricity price
is generally low during this period. Aggregators coordinate and
control PEV charging. PEV owners relinquish control of their
batteries’ state of charge, in exchange for a fixed reduced elec-
tricity rate. We are considering a risk-averse aggregator, who
would purchase the bulk of its electricity through long-term bi-
lateral contracts and/or by participating in the day-ahead mar-
kets (there are 24 hourly markets); the real-time market would
be used for balancing purposes only. Specifically, it is assumed
that this aggregator controls a fleet of N = N; + Ny PEVs;
Ny PEVs are charged with energy purchased through bilateral
contracts, while the remaining Vo PEVs are charged with en-
ergy purchased in the day-ahead market. This split is arbitrary,
and in the extreme case, either N1 or N5 could be zero. Set-
ting N1 = 0 would increase the aggregator’s financial risk, so
it might not be a prudent choice. Also, because the number of
PEVs that subscribe to this aggregator can change on a daily
basis, /V, realistically cannot be zero, unless the aggregator up-
dates its bilateral contracts daily, which is highly unlikely. In
any case, it should be noted that this paper does not delve on
the determination of the optimal split between Ny and N», but
rather on what happens once this split is given. Due to the as-
sumption of a fixed retail rate, profit maximization is equivalent
to minimization of the purchased energy cost. Therefore, this
aggregator would take advantage of the flexibility of the PEV
load, and would charge PEVs with the cheapest possible elec-
tricity, which typically occurs during off-peak hours at night.
Also, in the presence of several competing aggregating entities,
the reduction of energy cost would be necessary to gain market
share.

This paper has two main objectives.

1) To set forth algorithms that aggregators can use to schedule
and dispatch the PEV load so that their energy cost is re-
duced (and ideally minimized), using information about
the forecasted charging demand for the coming day. The
proposed scheduling algorithm can be applied for nego-
tiating long-term bilateral contracts, based on the offered
electricity price (especially if this price is time-varying);
or for participating in the day-ahead market, based on the
forecasted electricity price. The proposed dispatch algo-
rithm is used to distribute the purchased energy to the in-

dividual PEVs during the operating day. “Scheduling” and
“dispatch” are familiar terms in power system analysis, ap-
plicable to generators in the context of unit commitment
and economic dispatch, respectively. Herein, these terms
are applied to the charging of PEV batteries. In particular,
“dispatch” refers to the determination of the charging time
for each PEV (dynamically, in real time) so that the ac-
tual aggregated power consumption follows the “sched-
uled” load curve purchased by the aggregator.

2) To identify how an aggregated PEV load would impact
the power system, assuming that the aggregator would op-
erate under the current electric energy market structure.
The analysis shows that the PEV load can have an un-
usual stepped pattern, which could be detrimental to the
proper operation of the power system. It also suggests that
new market mechanisms might be necessary to provide
load-leveling and load-smoothing incentives to aggrega-
tors.

The rest of this paper is organized as follows: Section II out-
lines assumptions made in this analysis. In Section III, poten-
tial issues with simple uncontrolled off-peak charging are pre-
sented. In Section IV, a scheduling algorithm is proposed for
minimizing the expected electric energy cost according to the
price variation and the charging demand. In addition, a dynam-
ical dispatch algorithm is set forth. In Section V, simulation re-
sults are discussed. Finally, Section VI concludes the paper.

II. ANALYSIS ASSUMPTIONS

The proposed algorithms are developed and validated using
the actual U.S. travel patterns as captured by the 2009 NHTS,
and the simulation method of [4]. The NHTS statistical data rep-
resent the travel patterns of the U.S. light-duty vehicle (LDV)
fleet,! and contain information on the travel behavior of a na-
tional representative sample of U.S. households, such as mode
of transportation, trip origin and purpose, and trip distance. LDV
travel accounts for 92% of the highway vehicle miles traveled
[22], 76% of the energy consumed by highway travel modes
[23], and 74% of the carbon dioxide emissions from on-road
sources [24]. For the purposes of this analysis, the NHTS data-
base is used to extract statistics of electric energy consump-
tion, charging duration, and arrival and departure times, under
reasonable assumptions of PEV drivetrain configurations and
charger sizes. In the future, an aggregator will have access to
more accurate statistics by monitoring the actual composition,
travel pattern, and energy consumption of its own fleet.

The PEV charging infrastructure will be available at the
garages or driveways of PEV owners’ residences? and at some
public locations, such as parking lots of commercial buildings
and shopping malls. However, it is conceivable that, when
charging at public locations, a PEV driver might be hesitant
to permit controlled charging, especially if the driver needs to

IThe U.S. fleet of light-duty vehicles consists of cars and light trucks, in-
cluding minivans, sport utility vehicles (SUVs), and trucks with gross vehicle
weight less than 8500 pounds [21].

2Most probably, people will not consider purchasing a PEV if they cannot
charge their vehicle at home. Chargers are currently available for 120-V or
240-V circuits, both typically available at U.S. residences [25]. Often, PEV
manufacturers and the U.S. federal government offer assistance and financial
incentives for the installation of the required equipment [26].
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ensure that the battery will be charged as much as possible,
uninterrupted throughout the duration of the stop. (A notable
exception is the charging that would occur during normal busi-
ness hours, when employees’ vehicles would remain plugged in
at the parking lot of their workplace.) Therefore, for simplicity,
in this analysis it is assumed that the proposed controlled
charging program is associated only with home charging.
Nevertheless, in case it becomes necessary to account for the
charging at public locations as well, the proposed scheduling
and dispatch methods would still apply.

The proposed methods require that the aggregator utilizes
techniques for forecasting the day-ahead electricity price, such
as the ones presented in [27]-[30]. Herein, it is assumed that
day-ahead locational marginal price (LMP) can be forecasted
with reasonable accuracy, and the error associated with the fore-
cast is ignored. It is important to note that the LMP forecast’s
absolute value is not critical. Rather, for minimizing cost, it is
the ranking of the hourly LMPs that is critical, and should be
predicted as accurately as possible. In addition, it is assumed
that aggregators’ actions do not affect the relative ranking of
hourly LMPs.

Finally, any charging constraints that would arise at the dis-
tribution level (e.g., from transformer overloading) or distribu-
tion system optimization [31] are ignored. This analysis is per-
formed at the bulk power level, and it is further assumed that
the aggregator can schedule arbitrarily large amounts of power.
Extending this work to systems with detailed distribution feeder
models is worthwhile, but is left for future study.

III. UNCONTROLLED OFF-PEAK CHARGING

Fig. 1 depicts the average percentage of vehicles parked at
home through a day, calculated using the NHTS data. As can be
seen, more than 90% of vehicles are parked at home between 9
P.M. and 6 A.M. Recognizing this opportunity, several charging
strategies have been previously proposed for shifting the PEV
load to off-peak hours, in order to utilize less expensive elec-
tricity and reduce the peak of the overall load. For example, all
the vehicles begin charging at 10 P.M. in the “delayed charging”
scenario of [7]; half of the vehicles are charged at 10 P.M. and
half at 11 P.M. in the “night charge” scenario in [9]; vehicles are
only charged between 12 A.M. and 6 A.M. in the “delayed night
charging” scenario in [10]. These studies, however, do not take
into account realistic travel patterns. So, herein, a similar sce-
nario is considered using the travel pattern obtained from the
2009 NHTS, with charging only allowed between 10 P.M. and
7 AM. During this period, PEVs will be charged whenever they
are parked at home until their batteries reach full capacity. Com-
puter simulations are performed using the method and parame-
ters presented in [4].

The simulation results provide the average power consump-
tion that is shown in Fig. 2(b). It can be observed that the re-
sulting peak load per PEV is much higher than the uncontrolled
charging scenario shown in Fig. 2(a). This happens because
charging tends to concentrate at the beginning of the charging-
allowed period, whereas it would be naturally distributed with
time if left uncontrolled. This PEV load is also superimposed on
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Fig. 1. Average percentage of vehicles parked at home in 2009.
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Fig. 2. Average power consumption per PEV (in an urban area on a weekday).
(a) Uncontrolled charging. (b) Simple-delayed charging. (c¢) Modified delayed
charging.

MISO’s load curve in Fig. 3, for 1 million and 10 million PEVs
(which amounts to about one third of the current LDV fleet size
in the MISO area).

These findings contradict the conclusions of previous studies
(which are obtained with simplified travel patterns) that sug-
gest simple-delayed charging strategies are better than uncon-
trolled charging in terms of reducing the peak load. In addition,
even though the cost of electric energy in this charging scenario
would be probably reduced compared to uncontrolled charging,
this is not necessarily the most economic way to charge the PEV
fleet. The electricity cost could be further reduced by optimally
shifting PEV charging to periods with the lowest LMP.

The adverse sharp peak can be avoided with a simple mod-
ification, namely, by uniformly distributing the charging start
time over a predefined period (e.g., from 10 P.M. to 12 A.M.).
This leads to lower peaks, as shown in Figs. 2(c) and 3(c). In
fact, it might even be possible to solve the inverse problem
of finding the distribution of charging start times that would
generate some desirable load pattern. The aggregator would in
turn reflect this distribution to the financial contracts with PEV
owners. Although this method would be rather simple to imple-
ment, it would be static and inflexible, and it would not allow
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Fig. 3. PEV fleet power load superimposed on MISO load curve. (a) Uncon-
trolled charging. (b) Simple-delayed charging. (c) Modified delayed charging.

dynamic coordination among PEVs. Also, the peak of the ag-
gregated load would not be synchronized with the lowest LMP,
because this varies on a daily basis.

Other more advanced charging control algorithms have been
proposed to fill the overnight valley, such as the decentralized
control strategy described in [32]. However, flattening the
overall load may increase the aggregators’ energy cost in the
wholesale electricity market. A different strategy is required to
maximize the aggregators’ profits from energy trading. This is
described in the next section.

IV. PROPOSED ALGORITHMS

In the proposed framework, aggregators control PEV
charging during the off-peak period from 10 P.M. to 7 A.M. It is
also assumed that they are contractually bound to maximize the
state of charge of the batteries by the departure time declared
by each PEV owner3 (unless a battery cannot be fully charged
overnight given its state of charge on arrival and the charger
rating). The charging period is discretized into a finite number
of slots. The proposed scheduling algorithm determines the
amount of energy to purchase in each time slot, according to
the price (either the bilateral contract price or the forecasted
day-ahead LMP) and the PEV charging demands. On the oper-
ating day, aggregators need to dispatch the PEV load according
to the committed load. The dispatch algorithm determines the
time slots where each PEV will be charged.

A. Scheduling

Consider an aggregator that is controlling a fleet of N, PEVs,
x € {1,2}, which are indexed by 7. Let p; denote the charger

31t is conceivable that some PEV owners would try to ensure that their ve-
hicle gets charged by reporting false (i.e., earlier than the actual) departure time.
Hence, they must be incentivized to report their true departure time, or penal-
ized when they consistently report false departure times. The design of such
mechanisms would fall within the aggregator’s responsibility, but is outside the
scope of this paper.

TABLE I
CHARGING CIRCUITS

Charging circuit Charger rating (kW) Ratio
120 V, 15 A (Level 1) 1.4 1/3
3.3 (limited by on-board charger) 173
240 V, 30 A (Level 2) 5 3
rating of vehicle 7, which belongs to a set {¢1, ..., ¢, ..., s},

where ¢; is the rating of charger type 7 among a number of
charger types J. For a normal residential wiring installation,
typical options for charging circuits [33] are shown in Table I,
where “charger rating” denotes the nominal power consumption
(continuous rated power) at the wall outlet. The “ratio” column
shows that these are equally distributed within the hypothetical
fleet of PEVs herein for simulation purposes. It is conceivable
that there might exist commercial charger models with the capa-
bility to modulate the charging power from zero to a rated value
based on an external control signal. Nevertheless, in the pro-
posed minimum-cost scheduling and dispatch scheme, all PEVs
are charged with either zero or maximum rate. In fact, optimal
battery charging follows a varying power profile [34]. However,
it has been found that modeling this profile in detail does not af-
fect the simulation results significantly.

The charging period is discretized into K time slots, indexed
by k, with the duration of each time slot equal to AT". The pa-
rameter AT is independent of the rate that market operations
take place (e.g., on an hourly basis for the day-ahead market),
and will be on the order of 1 min. Such a fine resolution might be
necessary to ensure proper charging of the PEVs, i.e., to better
accommodate vehicles that arrive or leave at arbitrary times,
or whose charging time is not an integer number of hours. The
charging time of PEV ¢, denoted by /;, is defined as the number
of time slots during which charging would take place with full
rate p;, under a simple-delayed charging scenario; in this sce-
nario, vehicles are plugged in as soon as they arrive home, the
only restriction on the charging is that it must take place within
a prescribed time period, and there is no other advanced control
whatsoever. Clearly, 0 < /; < K. The total energy required to
charge all vehicles is £ = AT z;l p;l;. Furthermore, let 7y,
denote the price (either from the bilateral contract or the fore-
casted day-ahead LMP) during time slot %, and n{l, 4, s, e) de-
note the number of vehicles with charging time [ and charger
type j, which arrive home at time slot s and leave home at time
slot e. (If a vehicle leaves home later than K, then sete = K.)
Because a vehicle associated with the parameter set {I, j, s, e}
can be charged for at most e — s time slots (the earliest that
charging can start is the s + 1 slot), it follows that [ < e — s.

It is assumed that reliable estimates of n(Z, 7, s, ) can be ob-
tained from statistics, based on data that the aggregator can col-
lect on a daily basis from its fleet of PEVs. Herein, such statis-
tics are generated using the 2009 NHTS data set. For illustration
purposes, we consider the trips of all urban vehicles that trav-
eled on weekdays, and it is assumed that the driving patterns of
PEVs are similar to those of regular automobiles. Elimination of
the vehicles that did not travel on the survey date (ca. 35% of the
total number of vehicles), as well as of those that for any reason
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Fig. 4. Probability of vehicle arrival and departure time. Note: The vehicles
in the 10:00—10:20 P.M. arrival time or 6:40—7:00 A.M. departure time category
arrived home before 10:20 P.M. or left home after 6:40 A.M., respectively.
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Fig. 5. CDF of daily VMT for several combinations of arrival and departure

times.

did not return home at the end of the day (ca. 5.8% of the vehi-
cles that traveled), yields a total of approximately 86 000 vehi-
cles, whose trips are used to generate the statistics. First, each
vehicle is categorized according to its arrival and departure time,
using 20-min-long time slots. This results in the two-dimen-
sional probability distribution shown in Fig. 4. As can be ob-
served, the majority of vehicles (ca. 82%) arrive at home before
10:20 P.M., and leave home after 6:40 A.M., but several other
bins contain substantial vehicle numbers as well. It is impor-
tant to note that the travel patterns differ between these groups
of vehicles. For example, further examination of the NHTS data
reveals that vehicles that arrive home later at night and leave ear-
lier in the morning usually travel longer distances than the rest
(as is intuitively expected); this is depicted by the cumulative
distribution functions (CDFs) of vehicle-miles traveled (VMT)
shown in Fig. 5. Finally, the electrical energy required to charge
the PEVs is computed using the above VMT information and
the method described in [4]; some representative results from
these statistics are illustrated in Fig. 6. The end result of these
calculations is n(l, 7, s, €).

Given 7 and n(l, , s, ), a load scheduling that minimizes
the wholesale energy cost is outlined below as Algorithm 1.
(If 7, represents the forecasted day-ahead price, then it is the
expected energy cost that is minimized.) The basic idea is to
charge each vehicle in the time slots where the lowest electricity
price occurs. PEVs can only be charged when they are parked (at
home), so for each vehicle 2 only the time slots between s; and
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Fig. 6. CDF of daily PEV electric energy requirement for several combinations
of arrival and departure times.

e; need to be considered. The time slots are ranked by electricity
price from low to high, and the /, time slots associated with the
least expensive electricity are selected for charging.

Algorithm 1 Min-Cost Load Scheduling

1: Input: 7, for 1 < k& < K, and n(l, j,s,e) for
1<s<e<K 0<LI<e—s<Kandl1<j3<J.
for k. = 1to K do
P — 0
end for
for s = 1to K do
fore = s+ 1to K do
Rank the price 7 for s < £ < e from lowest
to highest. The ranking function is denoted by
R, 41 (), and takes the values {1,...,e — s}. If
different time slots have equal 7, they are ranked
according to the index % from low to high.
8: form = 1toe — s do
9: Compute the power which should be purchased
for the time slot with the m'™" cheapest price among
time slots s + 1 to e, which is

J e—s
Xm Z Cy Z 'fL(l,j, s, €)

AN A

j=1 I=m
10: end for
11: fork = s+ 1toedo
12: Update the charging power Py, for time slot &:
Pr — Pr+ XR, 1 (7))
13: end for
14:  end for
15: end for

16: return Py

Algorithm 1 solves the following linear program:

N, K
min ATZ Zrkpi’k (1
bk i=1 k=1
X
subject to Zpi,k =pl;, foralli 2)

k=1
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0<pir <p;, forallik 3)
pir =0 fork <s;andk > e;, for alli.
4)

The solution that is produced is (for all %)

Pik = pi, for ksuch that Ry, 41, (7)) <1, and  (5)
pir = 0, otherwise. (6)

This solution corresponds to one of the extreme points on the
boundary of the feasible region, and is optimal by construction.
The algorithm outputs a schedule for the minimum-cost power
purchase, P. It is possible to use a commercial solver to ob-
tain a numerical solution to this problem. However, this solution
will not have a clear physical significance. On the other hand,
the proposed algorithm, via the use of the ranking function R,
provides a way to affect the shape of the PEV load, as will be
demonstrated later.

It is interesting to observe that there might be other equally
optimal solutions to this problem, yielding the same energy cost.
For instance, consider a PEV ¢ that has been parked at home
since early in the evening, and that needs to charge for 90 min,
so l; = 90 if AT = 1 min. Also, assume that the price re-
mains constant for hour-long intervals (as usual for the LMP
of the day-ahead market). Obviously, this PEV’s charging will
be spread over two hourly intervals (which could be non-adja-
cent), corresponding to the two lowest LMPs occurring between
s; and e;, say, between 1-2 A.M. (the lowest), and 4-5 A.M. (the
second lowest). Therefore, this PEV will get charged for all 60
slots between 1-2 A.M., but the remaining 30 slots can be se-
lected arbitrarily from the 60 slots of the 4-5 A.M. period (there

are(gg)

ferent combinations of contiguous time slots). Alternatively, the
PEV could be charged during the entire 4-5 A.M. period, but at
reduced (half) power if this capability is provided by the charger,
or for some other combination of time slots/power level if the
battery charging tail end profile is considered. The proposed Al-
gorithm 1 would use the first 30 slots of the 4-5 A.M. interval,
because of its definition of the ranking function R (see step 7).
Various other minimum-cost algorithms, each using a different
slot selection algorithm, can be conceived. This flexibility could
be used to provide regulation services to the power system [20].

The relative ranking of hourly day-ahead LMPs will prob-
ably not be affected under a mild PEV penetration level, say,
within the next five to ten years. However, this could occur
under higher PEV penetration levels. In this case, the aggregator
would use a modified min-cost scheduling algorithm, whose
basic idea is as follows: First, PEV load will be scheduled during
the cheapest hour of day, until the price becomes equal to the
second cheapest price. After this point, additional PEV load will
be distributed between these two hours of the day. If the PEV
load makes the price reach the level of the third cheapest price,
then any additional PEV load will be distributed over these three
hours, and so forth. The use of advanced day-ahead LMP fore-
casting algorithms, such as the ones in [27]-[30], will be again
necessary.

combinations if the slots are not contiguous, or 30 dif-

B. Dispatch

The purpose of the proposed dispatch algorithm (Algorithm
2) is to distribute the purchased energy to the PEVs, with as little
deviation from the schedule (P, ) as possible. It is assumed that
the aggregator does not engage in arbitrage. The charger ratings
(p;) of all PEVs controlled by the aggregator are known be-
forehand. The algorithm keeps running throughout the nightly
charging period, and dynamically updates the list of PEVs and
their charging time slots. The plug-in time (s;) and required en-
ergy (&;) are communicated by PEV ¢ to the aggregator as soon
as it is plugged in. Simultaneously, the PEV owners report their
expected departure time (e;). For the vehicles that are expected
to depart after the end of the charging period, the departure time
is set to K. The charging duration (/;) is calculated based on the
above information, from &; = AT, p;. Decisions are made dy-
namically in real time for each arriving PEV, which is assigned
the next [; least expensive time slots, as long as these slots still
have available power. At time slot %, if & € H;, the aggregator
charges PEV ¢ with rate p;. It should be noted that Algorithm 2
is not an optimization algorithm. However, its design is related
to Algorithm 1, because it also uses the same ranking function
R.

Algorithm 2 Dispatch

Input: P fork=1,...,K,andp; fori =1,...,N,.
loop

if PEV i arrives at home and gets plugged in then

Receive {&;, s;, ¢; +. Calculate /.

Rank the time slots {k : 5,41 < k < ¢; and P > 0}
according to 7, from lowest to highest. The rank of
slot & is denoted by R, +1.¢, (Tk)-

{P, < 0 corresponds to the case where the purchased
power at time slot k& has been exhausted. }

A e

6: Hi — {k : RS,:-I-LE,:(TR') < lt}
7: Pr — Pr —p;, forall k € H;.
8: endif
9: end loop

V. SIMULATION RESULTS

Fig. 7 depicts the average load per PEV (i.e., all PEVs
under contract, including those do not travel or return home)
that would be obtained from Algorithm 1 with a hypothet-
ical day-ahead LMP variation. The algorithm is run using
1-min-long time slots, while the price changes on an hourly
basis. As can be observed, at the beginning of each hour,
the PEV load has a relatively large spike that decreases with
time, due to those PEVs that finish charging before the hour is
over. This load shape is quite different from a traditional load
variation. If the penetration of PEVs becomes significant, these
abrupt step changes (both upwards but also downwards at the
start of each hour) could be problematic for frequency regula-
tion and transient system stability. Perhaps a better solution for
the power system would be to average the PEV load throughout
the hour. To achieve this, for example, the ranking function R
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could be modified so that there is no preference for earlier time
slots. This yields the load profile shown in Fig. 8.

Algorithm 2 (dispatch) is applied to a set of trips randomly
generated based on the NHTS data, different than the one used
for the scheduling algorithm. In particular, the departure of
PEVs at times different from the reported ones is modeled as a
Gaussian error term: ef™° = ¢; + A(0,0). A 10-min standard
deviation is chosen. Since most of the vehicles leave after 7
A.M., such errors are quite insignificant. Even for those PEVs
that depart before 7 A.M., an earlier departure may not cause a
problem, because their charging might be complete before their
actual departure time. The dispatch obtained by Algorithm 2
is shown in Fig. 7 together with the scheduled load that was
previously determined from Algorithm 1. The two curves are
almost identical.

Aggregators would have to purchase the estimated average
hourly power consumption as hourly energy blocks in the day-
ahead market (or by a long-term bilateral contract). Hence, it
could be argued that any aggregator would level its hourly load
in order to match its actual consumed power with the amount
purchased. This would minimize the deviation of its real-time
load from the purchased power, reducing (and ideally elimi-
nating) potential penalties or losses incurred from being forced
to participate in the real-time markets.

Nevertheless, even this “flatter” load variation is atypical.
Even without the pronounced spikes at the beginning of the
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hour, the step changes—if large enough—could cause prob-
lems to system frequency regulation. As mentioned in the
Introduction, PEV fleets can be used to provide regulation
services to the system to alleviate generation-load unbal-
ance [17]-[20], whereas the PEV load shape obtained by
the min-cost scheduling algorithm will require additional
regulation at the beginning of each hour from other sources.
(This becomes apparent once the maximization of energy
trading-related profits becomes an objective. Previous work
on PEV-related frequency regulation has not identified this
issue.) Power systems routinely handle MW-level step changes
in load, for example, from large industrial customers. The
potential problem described here stems from the sheer impact
of a large aggregate PEV load (such as several million PEVs in
the MISO system that would cause hourly steps on the order
of hundreds of MW) coupled with its controllability. This will
tend to synchronize the step changes at the beginning of the
hour among all aggregators in the system, especially if the
prices are calculated on a zonal rather than a nodal basis, or
for metropolitan areas with a single LMP where large con-
centrations of PEVs would exist. This phenomenon could be
made less pronounced by purchasing the bulk of the energy
via long-term bilateral contracts.# Also, the difference of LMP
prices at different nodes throughout the power system could
be beneficial, unless the correlation of LMP time variation is
significant throughout the system. A more accurate analysis
that will use LMP calculations obtained from an optimal power
flow formulation is left for future study, which should take into
account the impact of the additional PEV load on the LMP
levels, whose relative ranking is assumed to be predefined
in this analysis. But regardless of the calculated LMP levels,
the resulting waveform of aggregated PEV power load will
probably still have a similar staircase shape, with the bulk of
the energy consumed during the hour of lowest LMP.

Aggregators also have the option to bid a price-sensitive
load curve in the day-ahead market, but this complicates the
scheduling process considerably. To see why this is so, consider
the case where the contract between the aggregator and the
PEV owners stipulates that PEVs must be maximally charged
overnight. Assume that during hour A, high prices lead to some
PEV load not being served. This lost energy must be acquired
during hour /& + 1 or later. However, the price-sensitive bids
are submitted one day in advance, and cannot be modified.
This will force an aggregator to acquire the energy deficit in
the real-time market, and will increase its financial risk. (Even
so, it is not clear at which hour it would be advantageous to
purchase the deficit.) So, bidding price-sensitive loads might
be a problematic strategy.

The currently implemented two-settlement market structure
has been devised with the traditional slowly varying bulk power
system load in mind, which has relatively minor real-time de-
viations. But an emerging controllable PEV fleet represents an
important new constant-energy load paradigm, which requires a
certain amount of electric energy over a specific period of time,
and for which the exact time and rate of power consumption

4Applying Algorithm 1 to a bilateral long-term contract with a single off-peak
price yields an average power consumption that is identical to the curve of Fig.
2(b). A large step change in load would still occur, but only once.
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are not critical to the end-user. Our results seem to suggest that
perhaps the existing market mechanisms should be modified, in
order to provide the appropriate incentives to the PEV aggrega-
tors, so that the power system operation is not compromised. For
example, it might be beneficial to smoothen the PEV load vari-
ation; however, a hypothetical aggregator today would have no
incentive to do so, and in fact it might be penalized for deviating
significantly from the purchased load level. Perhaps new regu-
lations that impose maximum ramp up/down rates to aggregated
PEV loads are necessary, in addition to the ones already in place
for generating units. Alternatively, it might be beneficial to use
the PEV load to fill the overnight valleys of the overall system
load; this has been previously suggested to be one of the major
benefits of PEV integration with the power system. Apparently,
this will not be the case if aggregators participate in the whole-
sale energy markets, because the obtained load will not have the
required pattern that will exactly level the load curve. The de-
sign of appropriate market-based mechanisms remains an open
research question.

VI. CONCLUSION

This paper set forth algorithms for the scheduling and dis-
patch of electric power by aggregators of PEV fleets, whose
main objective is the maximization of energy trading profits.
The aggregators are assumed to operate in the current whole-
sale electric energy market framework. The algorithms were
developed by taking into account realistic vehicle travel pat-
terns from the NHTS database. The impacts of such fleets on
the bulk power system were estimated with computer simula-
tions. A major implication of our findings is that current market
regulations and policies associated with PEV load have to be
revised, to avoid causing problems to the power system, and to
incentivize its utilization in a synergistic manner in order to im-
prove the overall system operation, especially for aggregators
without interest in ensuring power system reliability.
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